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Abstract—The 6-degrees of freedom (DOF) image localization,
which aims to calculate the spatial position and rotation of a
camera, is a challenging problem for most location-based services.
In existing approaches, this problem is often tackled by finding the
matches between 2D image points and 3D structure points so as
to derive the location information via direct linear transformation
algorithm. However, as these 2D-to-3D-based approaches need to
reconstruct the 3D structure points of the scene, they may not
be flexible enough to employ massive and increasing geo-tagged
data. To this end, this paper presents a novel approach for 6-DOF
image localization by fusing candidate poses relative to reference
images. In this approach, we propose to localize an input image
according to the position and rotation information of multiple
geo-tagged images retrieved from a reference dataset. From the
reference images, an efficient relative pose estimation algorithm is
proposed to derive a set of candidate poses for the input image.
Each candidate pose encodes the relative rotation and direction of
the input image with respect to a specific reference image. Finally,
these candidate poses can be fused together by minimizing a well-
defined geometry error so that the 6-DOF location of the input
image is effectively derived. Experimental results show that our
method can obtain satisfactory localization accuracy. In addition,
the proposed relative pose estimation algorithm is much faster than
existing work.

Index Terms—Image localization, one-sided radial fundamental
matrix estimation, relative pose estimation.

I. INTRODUCTION

LOCATION information of an image is important for vari-
ous location-based services and applications, such as travel

recommendation [1], image navigation [2], location guided im-
age retrieval [3], [4], augmented reality [5], [6], and autonomous
navigation [7], [8]. The 6-DOF image location information ac-
tually contains 3-DOF spatial position and 3-DOF rotation in
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the world coordinate. This information is difficult to be labeled
manually as users have difficulty in adjusting the 6-DOF pa-
rameters simultaneously. Moreover, it will take huge time to
manually label the rapidly increasing image data, the majority
of which lack location information. Therefore, it has certain
practical significance to localize images automatically.

To alleviate this problem, various methods have been pro-
posed in existing literature. Some of them perform 6-DOF im-
age localization by employing 3D point cloud model of the
scene. The point cloud model is usually reconstructed from ref-
erence images via structure from motion (SfM) algorithm, e.g.
[9], [10]. With the point cloud model, the localization problem
can be formulated as a 2D-to-3D registration process [11]. Un-
der this formulation, previous methods first find the matches
between 2D image points and 3D structure points according
to their features similarity. The point matches can be further
utilized to calculate the location information using direct lin-
ear transformation (DLT) algorithm [12]. All of these steps can
be embedded into a RANdom SAmple Consensus (RANSAC)
[13] iteration process for robustness. Most researchers focus on
how to find robust 2D-to-3D point matches efficiently and have
proposed various methods, e.g. [7], [11], [14]–[17]. Benefitting
from the pre-processed 3D point cloud model, these model-
based methods can well localize the input image. However, as
these methods need to reconstruct the 3D structure points of the
scene, they are not flexible with massive and increasing geo-
tagged data. Moreover, it is also time-consuming to reconstruct
the 3D point cloud model.

Besides 3D point cloud model based methods, some meth-
ods [18]–[21] recognize the landmarks in the input image, then
transfer the position of the landmarks to the input image. Some
others [22]–[25] first retrieve or select the nearest neighbors of
the input image from the reference dataset by measuring the
visual similarity. Then the final position can be calculated by
fusing the position of retrieved neighbors. These methods can
be scalable benefiting from scalable image retrieval methods,
e.g. [26], [27]. However, they mostly can only obtain the coarse
position but lack the ability to calculate the accurate 6-DOF
location, which limits their practical applicability.

In order to explore a more flexible method to obtain the 6-DOF
location, we find that there have appeared massive geo-tagged
images, e.g. google street view. As an alternate solution, an in-
put image can be localized by exploiting these geo-tagged data
directly. Inspired by recent image label transfer works [28], [29]
on scene parsing, our basic idea is to transfer the 6-DOF loca-
tion information to the input image by fusing its poses relative
to the reference images, which is intuitively illustrated in Fig. 1.
From this idea, given an input image, its nearest neighbors are
retrieved from a large reference dataset using a content based

http://www.ieee.org/publications_standards/publications/rights/index.html


Fig. 1. Our basic idea is to localize an image by transferring the location
information of reference images to it. To this end, we first estimate the relative
pose between the input image (with red lines) and each of its reference images
(with green lines), and then fuse all these candidate poses to obtain the final
6-DOF location. As a result, our method can flexibly exploit the incremental
geo-tagged data.

image retrieval algorithm. An efficient algorithm is further pro-
posed to estimate the pose of the input image relative to each of
the nearest neighbors so as to obtain a set of candidate poses. At
last, these candidate poses are fused together to figure out the
final 6-DOF location by minimizing a well-defined geometry
error.

Our contributions mainly include two aspects: 1) we propose
an efficient algorithm to estimate the relative pose between a
calibrated reference image and an uncalibrated input image so
as to obtain several candidate poses of the input image; 2) in
order to effectively figure out the 6-DOF location of the input
image, we define and minimize a geometry error to fuse these
candidate poses.

The rest of this paper is organized as follows. Section II re-
views some related works. Section III first overviews the whole
pipeline of our method and then explains each step in detail.
Finally we show the experimental results in Section IV and
conclude this paper in Section V.

II. RELATED WORK

There are mainly three classes of methods related to our work,
including image localization methods based on 3D point cloud
model, localization via landmark recognition, and relative pose
estimation.

A. Image Localization Based on 3D Point Cloud Model

These methods commonly formulate the localization task as
a 2D-to-3D registration problem. They first find a set of point

matches between 2D points in the input image and 3D struc-
ture points in the point cloud model by measuring the similarity
among the features of each point. Before that, the point cloud
model should be reconstructed via SfM systems, e.g. [9], [10].
Then the accurate 6-DOF location of the input image can be
estimated via DLT algorithm [12]. The key challenge of these
methods is how to efficiently find abundant and robust point
matches. To this end, Irschara et al. [11] apply image retrieval
techniques to find the nearest views of the input image so as to
reduce searching space. The nearest views are generated from
the 3D point cloud. The retrieval step of this work is similar
to ours, which also verifies that it can be applied to accelerate
6-DOF image localization. However they use 3D point cloud
to generate the visual documents of synthetic views while we
directly use the original reference images. Sattler et al. [14]
evaluate the performance of direct 2D-to-3D matching method
by applying a direct matching framework based on visual vo-
cabulary quantization and a prioritized correspondence search.
This work explores the upper limit where 2D-to-3D methods can
reach. Lim et al. [7] use inexpensive binary feature descriptors
instead of scale-invariant features so as to enable real-time lo-
calization. Li et al. [15] utilize co-occurrence prior and bidirec-
tional matching to efficiently find point matches which enables
localizing images in worldwide scale. MiddelBerg et al. [16] de-
velop a system under Client/Server framework. This system can
simultaneously benefit from the scalability of a global localiza-
tion server and the precision of a local pose tracker on a mobile
device. Unlike previous works, Donoser and Schmalstieg [17]
formulate the point matching process as a discriminative clas-
sification problem. These state-of-the-art methods can perform
6-DOF image localization task well by exploiting the 3D point
cloud. However, it is time consuming to reconstruct the 3D
point cloud. Moreover, as the geo-tagged data are usually dy-
namically growing in real world, e.g. Google Street View, these
model-based methods are not flexible to immediately exploit
the latest data.

B. Localization via Landmark Recognition

Some methods [18]–[21] localize an input image by rec-
ognizing the landmarks in it and transferring the landmarks’
position to the input image. Before that, the location of each
landmark should be annotated. Li et al. [18] formulate the task
as a classification problem and recognize 500 categories of
landmarks on a large dataset. Hao et al. [19] introduce the 3D
visual phrase which is a triangular facet on the surface of a re-
constructed 3D landmark model. The 3D visual phrase is further
exploited to improve landmark recognition accuracy. Bergamo
et al. [20] design a new discriminative codebook of local feature
descriptors for scalable landmark classification. Zhu et al. [21]
propose hierarchical multi-modal exemplar features to charac-
terize landmark images so as to achieve low storage overhead
and high recognition efficiency. Some others [23]–[25] retrieve
several nearest neighbors of the input image from the reference
database. Then the final position can be calculated by fusing
the geo-information of all retrieved neighbors. Chen et al.
[23] publish a city scale street view dataset and exploit user’s



position priors to improve the recall rates on mobile devices.
Cao and Snavely [24] embed the images in a graph so as to
improve the bag-of-visual-words based location recognition
method. Zamir et al. [25] query the input image’s scale-invariant
feature transform (SIFT) descriptors in the indexed tree of
reference images. Then an associated voting scheme is utilized
to determine the final position. Zhang and Kosecka [22] also
localize an input image by estimating relative pose to each
of its references. However, they mostly can only obtain the
position of the input image. Benefitting from large-scale image
retrieval algorithms, e.g. LIRe [27], these methods are always
good at handling large-scale data. However, they are incapable
of obtaining the accurate 6-DOF location of the input image.
Besides these methods, Baatz et al. [30] can obtain the rotation
and position information, however, their method assumes that
the input image is calibrated and contains facade with grids of
windows.

C. Relative Pose Estimation

In order to transfer the 6-DOF locations of neighbor images
to the input image, we resort to estimate the relative pose be-
tween the input image and each of its neighbors. Given a pair
of images, different algorithms have been proposed to estimate
their relative pose under different configurations. For a pair
of calibrated images, the relative pose can be estimated using
5-point algorithm, which has been well-studied. Nistér et al.
[31] present an efficient algorithmic solution to tackle this prob-
lem. By solving a tenth degree polynomial in closed form, the
algorithm is well suited for numerical implementation that also
corresponds to the inherent complexity of the problem. For a
pair of perspective images with known intrinsic parameters ex-
cept for an unknown common focal length, Stewénius et al.
[32] present an efficient solver given six corresponding points.
However, in our situation, the input image is taken by users
which should be assumed to be uncalibrated and usually have
different focal length with reference images, thus the methods
above can not be applied directly. To this end, we propose to
estimate the intrinsic parameters first and transform the problem
to the configuration of two calibrated images. Bujnak et al. [33]
use Gröebner basis to address calibrated-uncalibrated setting
and apply it to 3D reconstruction, who assume that the uncali-
brated image only has one intrinsic parameter, i.e. focal length.
However, as radial distortion obviously affects the relative pose
estimation, it is also estimated in our method. Under this config-
uration, Brito et al. [34] solve a high-order polynomial system
to obtain the fundamental matrix and minimize an algebraic er-
ror to extract focal length, which is time-consuming and slower
than our algorithm.

III. IMAGE LOCALIZATION FROM RELATIVE POSES

In this section we first overview our method in Section III-A,
then present the details of each step, including nearest neigh-
bors retrieval in Section III-B, fundamental matrix estimation in
Section III-C, relative pose estimation in Section III-D and final
location determination in Section III-E.

A. Overview

We propose to localize an input image by fusing candidate
poses relative to reference images. The work-flow of our method
is illustrated in Fig. 2. First of all, several nearest neighbors
of the input image are retrieved from a reference dataset in
Section III-B. This step can be performed using a bag-of-visual-
words based image retrieval algorithm [27]. For each of these
neighbors, the fundamental matrix between it and the input im-
age is estimated in Section III-C. In our configuration, all the
images in reference dataset have been calibrated during building
the dataset, while the input image is not calibrated. Moreover,
in order to robustly estimate the relative pose, we assume that
the input image has two intrinsic parameters, including focal
length and one radial distortion parameter. Under this config-
uration, the fundamental matrix is modified to form one-sided
radial (OSR) fundamental matrix. A fast algorithm is further
proposed to estimate the OSR fundamental matrix and extract
the intrinsic parameters of the input image. The problem is then
transformed to calibrated relative pose estimation problem. The
pose of the input image relative to each of its neighbors can be
obtained in Section III-D. At last, in order to fuse the candidate
poses effectively, a geometry error is defined which encodes
the candidate poses additionally with a regularization term. By
minimizing this error, the final optimal 6-DOF location of the
input image can be figured out in Section III-E.

B. Nearest Neighbors Retrieval

Our basic idea is to estimate the 6-DOF location of an input
image based on the reference images. However, as the reference
images may dynamically increase with time, it is time consum-
ing to use all the reference images or construct a global model,
e.g. a point cloud model. To this end, we propose first to retrieve
some nearest neighbors of the input image according to the vi-
sual similarity. The similarity is usually measured by computing
the distance between global features or local features along with
bag-of-visual-words. In our case, the input image and its neigh-
bors should have some duplicated areas, which implies that they
are captured at the nearby places. That is exactly the objective
of content based image retrieval algorithms.

Benefiting from the achievements of content based image
retrieval techniques, there are many algorithms satisfying our
requirement. Without loss of generality, we employ LIRe [27]
which provides a library of basic and advanced functions for
visual information retrieval. In consideration of the computing
efficiency, SURF features [35] are extracted as the local features
from the images in reference dataset. K-means is subsequently
applied on the extracted local features to learn visual words. The
learned visual words can be used to establish a histogram for
each image. The histogram is usually called visual document
of its corresponding image. The distance between visual docu-
ments can be used to measure the similarity between images. By
ranking the similarity, several neighbors of the input image can
be retrieved. Fig. 3 shows some input images and the retrieved
neighbors. The retrieved nearest neighbors contain some real
positive neighbors of the input image, and some false positive



Fig. 2. Framework of our method. Given an input image, first, its nearest neighbors are retrieved from the reference database using a content-based image
retrieval algorithm. Each neighbor has 6-DOF location information. Then, we estimate relative pose between the input image and each of its neighbors to obtain
several candidate poses. At last, these candidate poses are integrated to get the final optimal 6-DOF location.

Fig. 3. Some image retrieval results. The retrieved images contain real neigh-
bors of the input image, and some false positive cases as well. The false positive
cases can be removed after applying epipolar constraints subsequently.

cases as well. However, most of the false positive cases can be
removed after applying epipolar constraint [12] subsequently.

C. OSR Fundamental Matrix Estimation

In this work, all images are assumed to be captured by pinhole
camera. For a pair of images capturing some overlap contents,
there exist many pairs of matched image points. For a pair of
matched image points 〈xL,xR〉, they are both projected from
an identical 3D point X. The corresponding focal centers of the
two cameras are denoted as OL and OR respectively. The epipo-
lar constraint implies that the line OL-xL and the line OR-xR

should intersect at X. The right camera sees the line OL-xL as
a line in its image plane, which is called the epipolar line of
the point xR. Symmetrically, the epipolar line of the point xL

Fig. 4. Fundamental matrix can encode epipolar constraint between a pair of
images captured by ideal pinhole camera, e.g. reference and undistorted input
image. If one image is assumed to have radial distortion, i.e. input image in this
paper, the OSR fundamental matrix is further introduced.

also can be defined. The details can be found in [12]. Actu-
ally, the 3 × 3 fundamental matrix F encapsulates the epipolar
constraint between the two images, which only depends on the
intrinsic parameters of the cameras and their relative pose. In
our situation, the reference images in dataset can be easily cal-
ibrated during collecting them. However, it is better to assume
that the input image is uncalibrated as the intrinsic parameters
are not easy to obtain for common users. As a result, the intrinsic
parameters must be estimated first. According to the imaging
process, the focal length certainty should be considered as it
is the most important intrinsic parameter. Moreover, as shown
in Fig. 4, the uncalibrated input image usually obviously suffer
from radial distortion so as to influence the accuracy of relative
pose estimation. To this end, we also assume that the intrinsic
parameters contain one radial distortion parameter. Under this
configuration, a OSR fundamental matrix is derived to simulta-
neously capture the epipolar constraint and the radial distortion.
After estimating the OSR fundamental matrix, the intrinsic pa-
rameters of the input image can be extracted from it. Then the
relative pose can be estimated the same as in traditional 5-point
algorithm [31].



Given a pair of images which are composed of one calibrated
reference image and one uncalibrated input image, we first find
the initial point matches between the two images using ratio
test algorithm by measuring Euclidean distance of SIFT features
[36]. For each feature point Q in the input image, the algorithm
first finds the closest point P and the second closest point Ps

in its neighbor image. Then the closest point P is taken as a
point that matches Q if the ratio of Euclidean distance from the
closest point to the second closest point is less than a predefined
threshold Th

DDD (P,Q)
DDD (Ps ,Q)

< Th (1)

where an empirical value of Th is 0.5. The idea behind ratio
test algorithm is that a real matched point should have distinct
shorter distance from query pointQ than others in feature space.
Otherwise, the matched point is usually a false positive. As a
result, this rule can pick out discriminative feature points and a
set of robust point matches can be obtained.

A pair of matched points is denoted as 〈P,Q〉 and the set of
matched points are denoted as M = {〈Pi ,Qi〉|i = 1, 2, ...,m}.
For a specific pair of matched points 〈P,Q〉, we denote their
homogeneous coordinates in image as p ∝ (xp, yp , 1)T and q ∝
(xq , yq , 1)T , respectively. As we suppose that the input image
has one radial distortion parameter λ, the undistorted image
coordinate of point Q can be given as qu ∝

(
xq , yq , 1 + λr2

)T
,

where r is the distance between the feature point Q and the
distortion center (u, v), which can be computed as

r2 = (xq − u)2 + (yq − v)2 . (2)

The distortion center (u, v) is assumed in image center.
According to the epipolar constraint, a pair of matched points

〈P,Q〉 satisfies the linear equation

pT Fqu = 0. (3)

As p ∝ (xp, yp , 1)T and qu ∝
(
xq , yq , 1 + λr2

)T
, the equation

can be written as

pT F

⎛

⎜
⎝

xq

yq

1 + λr2

⎞

⎟
⎠ = pT [f1 f2 f3 λf3 ]

⎛

⎜
⎜
⎝

xq

yq

1
r2

⎞

⎟
⎟
⎠ = 0 (4)

where fi is the ith column of the fundamental matrix F =
[f1 f2 f3 ]. We denote the matrix [f1 f2 f3 λf3 ] as V and call it
the OSR fundamental matrix in order to distinguish it from the
original fundamental matrix F. Furthermore, V is a matrix with
rank two as F has rank two.

Inspired by the 8-point algorithm to estimate the fundamen-
tal matrix [12], as (4) is linear for each element of V and V
is non-zero, we can first estimate V3×4 using 11 = 3 × 4 − 1
linear equations. These equation can be deduced from 11 pairs
of matched points. Then the low-rank constraint on V can be
enforced using singular value decomposition (SVD) algorithm.
According to the epipolar geometry constraint, given 11 pairs
of matched points, 11 linear equations are correspondingly ob-

tained as

Av = 0 (5)

where A is an 11 × 12 coefficient matrix and v is the vec-
tor version of V in row major order. Moreover, each row
of A is [xpi

xqi
, xpi

yqi
, xpi

, xpi
r2
i , ypi

xqi
, ypi

yqi
, ypi

, ypi
r2
i ,

xqi
, yqi

, 1, r2
i ] which is corresponding to a pair of matched points

〈Pi ,Qi〉. Then SVD algorithm can be applied to solve (5). Actu-
ally we decompose A via SVD and obtain the initial estimation
of v by picking out the right-singular vector corresponding to
the smallest singular value.

As the rank of F is two and V = [f1 f2 f3 λf3 ], V also has
rank two. However, the estimated matrix V may not satisfy
these constraints, thus we should enforce them. As we know,
SVD can be used to calculate the low-rank matrix which is
closest to the original matrix measured by Frobenius norm. For
a given matrix, its closest matrix with rank of c can be obtained
by retaining the c largest singular value and setting the others as
zero. Therefore the SVD algorithm can be applied to estimate
F and V. First, we get the matrix with rank one which is closest
to the last two columns of V via SVD. As the two columns are
linear dependent, the ratio between them is λ. Then, we figure
out the matrix with rank two, which is closest to the first three
columns of V, as final estimated F. As λ has been estimated,
the final V can be obtained.

Moreover, the OSR matrix estimation algorithm is embedded
in an RANSAC iteration process for robustness. Actually, in
each iteration, 11 pairs of matched points are random selected
to estimate an OSR fundamental matrix as a candidate. Each
candidate matrix is evaluated by counting the inlier matched
points. The matrix with most inliers is selected as final result.
A pair of matched points is regarded as inlier if they satisfy
the epipolar geometry constraint, actually the equation (3). For
robust numerical computation, the constraint is adjusted as if
the epipolar error is smaller than a threshold. The epipolar error
is the distance between the image point and its corresponding
epipolar line in the image plane. The threshold is empirically
set as 9.0 in our experiments. As shown in Fig. 3, the retrieved
results usually contain some false positives. As the false pos-
itives usually have less point matches, the neighbors with less
than 20 inlier matched points are discarded.

D. Relative Pose Estimation

As stated before, the input image has two intrinsic parameters,
focal length f and one radial distortion λ, where λ has been
estimated in Section III-C during estimating the fundamental
matrix. We will present the details to estimate the focal length f
and relative pose from fundamental matrix F. Since the images
in database are fully calibrated, their intrinsic parameter matrix
can be regarded as an identity matrix and the essential matrix E
can be written as

E = FK (6)

where K is the intrinsic parameter matrix of the input image.
As λ is known, K can be regarded as a diagonal matrix with
diagonal elements f, f, 1 in turn.



An essential matrix has rank two and has two equal non-zero
singular values [12]. That is to say, a real non-zero 3 × 3 matrix
E is an essential matrix if and only if it satisfies the equation

2EET E − tr
(
EET

)
E = 0. (7)

(6) is substituted into (7) and obtain

2FKKT FT F − tr
(
FKKT FT

)
F = 0. (8)

(8) can be expanded to get nine linear equations of f 2 and
correspondingly obtain nine estimated values of f . The first
row and first column is taken as an example and the others are
analogous. The corresponding equation is

f 2 (
F11 f T

1 f1 + 2F12 f T
1 f2 − F11 f T

2 f2
)

= F11 f T
3 f3 − 2F13 f T

1 f3 .
(9)

As focal length f > 0, f is

f =

√
F11fT

3 f3 − 2F13fT
1 f3

2F12fT
1 f2 + F11

(
fT
1 f1 − fT

2 f2
) (10)

where Fij is the ith row and jth column value of F. The mean
value of nine estimated f is taken as the final result. Moreover,
we discard the equations in which the coefficient of f 2 is close
to zero for computational stability.

After extract the intrinsic parameters, the essential matrix E
can be obtained by applying essential matrix equation (6). Then
the relative pose can be uniquely estimated same as in the 5-
point algorithm [31]. We denote a projection matrix of an image
as P = [R, t], where R is the 3 × 3 rotation matrix and t is the
translation vector. For clarity, we denote Pn = [Rn , tn ] as the
rotation matrix and translation vector of one neighbor relative
to the world coordinate, and denote Prn = [Rrn , trn ] as the
pose of the input image relative to its neighbor image. After
applying our relative pose estimation algorithm, a set of Prn

can be obtained.

E. Final Location Determination

Based on the relative poses between the input image and its
nearest neighbors, the final 6-DOF location information of the
input image can be figured out by fusing all the candidate poses
in this section. Here we first consider the rotation. Given the
rotation matrix Rn of one neighbor relative to the world coor-
dinate and the rotation matrix Rrn of the input image relative
to the neighbor, we can get the rotation matrix Rr of the input
image relative to the world coordinate as

Rr = RrnRn . (11)

For a given rotation matrix Rr , it can be decomposed into
multiplication of three basic rotation matrixes which are corre-
sponding to Euler angles θz , θx , θy in turn. To obtain the final
rotation matrix from several candidate poses, we can average
all the candidate angles respectively to obtain final rotation an-
gles. Then the final rotation matrix can be figured out via matrix
multiplication of three basic rotation matrixes corresponding to
θz , θx , θy .

Now the last problem is that the relative pose estimation
algorithm can only get the direction of ti but no length. As a

result, from a relative pose only a line can be obtained, where the
input image should be on. Moreover, as two lines can determine a
point, when there are more than one candidate relative poses, we
can resort to triangulation theory and figure out the intersection
point of these lines as the final position. If there are only one
candidate relative pose unfortunately, which rarely occurs, we
simply suppose that ti has unit length. Given the pose of the
input image relative to its one neighbor, although its 3D position
cannot be obtained, the relative pose [Rrn , trn ] and the 3D
position of one neighbor l = (xl, yl , zl)

T determine a straight
line L, which can be denoted as

x − xl

xd
=

y − yl

yd
=

z − zl

zd
. (12)

The 3D position of the input image should be on this line. As Pn

andPrn are known, the position of the neighbor l = (xl, yl , zl)
T

can be obtained as

l =

⎡

⎣
xl

yl

zl

⎤

⎦ = −R−1
n tn (13)

and the direction of the line d = [xd, yd , zd ]T can be obtained
as

d =

⎡

⎣
xd

yd

zd

⎤

⎦ = −R−1
n R−1

rn trn . (14)

One line L can only provide two different equations as
{

zdx − xdz = zdxl − xdzl

zdy − ydz = zdyl − ydzl .
(15)

Therefore given k (k � 2) relative poses, we can get 2k linear
equations according to (15). These 2k linear equations can be
solved by using least square algorithm to minimize the algebra
error. Then the final position x = (x, y, z) of the input image
can be obtained.

However, the algebra error has no geometry meaning and the
solving method is likely influenced by the scale of coefficient.
To this end, as shown in Fig. 5 we define the geometry error as
the sum of square distance between the input image and each of
the candidate line Li as Gl =

∑k
i=1 DDD2 (x,Li), where

DDD2 (x,Li ) = (x − xli )
2 + (y − yli )

2 + (z − zli )
2

− (xdi
(x − xli ) + ydi

(y − yli ) + zdi
(z − zli ))

2

x2
d i

+ y2
d i

+ z2
d i

.

(16)

Moreover, as the direction of Li is usually not accurate, we add
a regularization term Gn which is the sum of square distance
between the input image and each of its neighbors as Gn =∑k

i=1 DDD2 (x, li), where

DDD2 (x, li) = (x − xli )
2 + (y − yli )

2 + (z − zli )
2 . (17)

Finally, the final position x can be figured out by minimizing the
geometry error G = Gl + Gn . As G is convex and quadratic, we
can calculate its partial derivatives with respect to each variable



Fig. 5. To obtain the final position of the input image, we define a geometry
error as the sum of distance quare between input image and each of the candidate
line. Via minimizing it, the final position can be figured out.

of x respectively. ∂G
∂x is taken as an example and the derivation

is

∂G

∂x
=

k∑

i=1

(4 (x − xli )

+
2xdi

(xdi
(x − xli ) + ydi

(y − yli ) + zdi
(z − zli ))

x2
di

+ y2
di

+ z2
di

).

(18)

By setting the partial derivatives as zero, i.e. ∂G
∂x = 0, ∂G

∂y = 0,
∂G
∂z = 0, a system of homogeneous linear equations is obtained.
After solve this equation system, the final position x of the input
image can be got.

Moreover, as there are some unstable candidate poses, we
apply a maximum likelihood criterion and select two (k = 2)
most stable candidate poses to calculate the final location of the
input image. Actually the number of inlier point matches is used
to evaluate each candidate pose. The more inlier point matches,
the more robust the candidate pose.

IV. EXPERIMENTS

In order to verify the feasibility and effectiveness of our pro-
posed method, we test our image localization method on two
public datasets, including Cornell Arts Quad dataset [10] and
Dubrovnik dataset [37]. We also quantitatively compare our
calibrated-uncalibrated relative pose estimation algorithm with
previous works on synthetic and real data.

A. Image Localization

Cornell Arts Quad dataset and Dubrovnik dataset originally
are created for 3D reconstruction and are also used by 3D point
cloud model based localization algorithms. The dataset contains
not only the position and rotation information of all images but
also 3D structure point cloud. While in our experiments, we
only use the location information of images.

TABLE I
LOCALIZATION ACCURACY (IN METERS) OF LI et al. [15], OUR METHOD, OUR

METHOD WITHOUT RADIAL DISTORTION, WITHOUT REGULARIZATION

TERM, WITHOUT MAXIMUM LIKELIHOOD CRITERION,
AND WITHOUT GEOMETRY ERROR

localization accuracy (in meters)

1st quartile median 3rd quartile Mean # localized images

Li et al. [15] 0.50 1.67 5.00 4.73 254
Our method 0.46 1.59 4.54 4.08 305
Our method 0.52 1.82 5.07 5.00 310
w/o distortion
Our method 1.03 2.99 6.23 5.67 305
w/o maximum
Our method 0.80 3.25 11.11 11.34 305
w/o geometry
Our method 0.74 2.77 9.15 9.11 305
w/o Gn

The Quad dataset contains 6514 images in total, including 348
query images and 6166 reference images. In the retrieval step, a
visual vocabulary tree is first created via clustering SURF fea-
tures which are extracted from reference images. As duplicated
image areas are common in this dataset, most features should
appear more than twice in all reference images. Therefore, about
half of the reference images, i.e. 3000 images, are randomly se-
lected for computational efficiency. The trained vocabulary tree
contains 30 000 visual words. We further figure out the visual
document for each reference image and query image. Via mea-
suring the similarity between the visual documents, the top 20
nearest neighbor images are retrieved from reference images for
each query image.

We compare our method with a representative 2D-to-3D
based method [15]. As shown in Table I, our method not only
successfully localizes more images, i.e. 305 versus 254, but also
achieves more accurate localization results, i.e. 4.08 meters ver-
sus 4.73 meters in average. Fig. 6 visualizes our localization
results on Quad dataset. Note that, the 3D point cloud is only
used for visualization and not used in localization process.

We further perform an experiment to exploit the effectiveness
of each module in our method. The Table I shows our localiza-
tion results without radial distortion parameter λ (Our method
w/o distortion), without maximum likelihood criterion(using all
candidate poses), and without geometry error G (using algebra
error), without regularization term Gn , respectively. The local-
ization results show that, each module of our method is effective
to improve the localization performance.

The ratio test algorithm is used to find the initial matched
points between the input image and each of its neighbors. In
order to exploit the influence of the ratio threshold parameter
Th , it ranges from 0.2 to 0.8 by step 0.1. Table II shows the
localization accuracy when we use different Th , with the Th

decreasing, the more accurate localized results, the less suc-
cessfully localized images. As presented in Table II and Fig. 7,
the value of Th is a trade-off between localization accuracy and
the proportion of successfully localized images. Without loss
of generality, Th = 0.5 in our experiments. Our method can lo-
calize most query images with high accuracy and about 89%



Fig. 6. We visualize our localization results on the Quad dataset. Note that the point cloud is only used for visualization.

TABLE II
LOCALIZATION ACCURACY ON QUAD DATASET (IN

METERS) WHEN SET Th AS DIFFERENT VALUE

localization accuracy (in meters)

Th 1st quartile median 3rd quartile Mean # localized images

0.2 0.17 0.84 1.20 1.99 249
0.3 0.37 1.06 3.29 3.24 289
0.4 0.45 1.47 4.23 3.83 302
0.5 0.46 1.59 4.54 4.08 305
0.6 0.41 1.58 4.79 4.26 306
0.7 0.38 1.48 4.79 4.50 310
0.8 0.53 1.77 4.89 5.29 311

Fig. 7. Number of successful localized images along with error increasing on
Quad dataset using different ratio value.

images can be localized in ten meters. The localization error has
a median of 1.59 m, 1st quartile of 0.46 m and 3rd quartile of
4.08 m, which is more accurate compared with civilian GPS.

TABLE III
LOCALIZATION ACCURACY ON QUAD DATASET (IN

METERS) WHEN SET k AS DIFFERENT VALUE

localization accuracy (in meters)

k 1st quartile median 3rd quartile Mean # localized images

2 0.46 1.59 4.54 4.08 305
3 0.88 2.45 5.43 4.79 305
4 0.88 2.28 5.38 4.75 305
5 0.94 2.35 5.36 4.93 305
6 0.97 2.42 5.50 4.99 305
20 1.03 2.99 6.23 5.67 305

To determine the final location, we apply the maximum likeli-
hood criterion and choose the most robust two candidate poses,
instead of using all the candidate poses. In this experiment, its
effectiveness is verified. We denote the maximum number of
candidate poses as k ∈ [2, 20]. Note that, not every input image
can find k candidate poses as some neighbors are removed due
to the epipolar geometry constraint. As shown in Table III, the
localization error increases along with the increasing k due to
the additional coarse candidate poses. We set k = 2 in our ex-
periments so as to achieve the most accurate localization results.

To verify the generalization of our method, we also perform
the localization task on Dubrovnik dataset. There are 6044 refer-
ence images and 800 query images in this dataset. In the retrieval
step, 3000 images are selected from all reference images to cre-
ate a visual vocabulary tree with 30 000 visual words, which
is the same as on Quad dataset. We also retrieve the top 20
nearest neighbors for each input image. As stated in [37], the
ground truth of this dataset are noisy. Previous works, e.g. [15],
usually only report the successful localization proportion. In our
method, Th controls the trade-off between localization accuracy
and the number of successfully localized images as illustrated
before. We set the ratio threshold Th = 0.5, 0.6, 0.7, 0.8 respec-
tively, and can successfully localized 75.5%, 88%, 96%, 100%
images.



Fig. 8. Results of distortion parameter λ and focal length on synthetic data. (a) Relative error of distortion parameter λ compared with Brito et al. [34].
(b) Relative error of focal length compared with Brito et al. [34]. The horizontal axis represents the standard deviation of Gaussian noise added on points and the
vertical axis represents relative error. The results show that, with the increasing noise, our method can achieve more accurate results.

Fig. 9. Results of translation angle and rotation angle on synthetic data. (a) Translation angle error compared with Brito et al. [34]. (b) Rotation angle error
compared with Brito et al. [34]. The horizontal axis represents the standard deviation of Gaussian noise added on points and the vertical axis represents angle
error. The results show that, with the increasing noise, our method can achieve more accurate results.

To evaluate the efficiency of our method, we compare the
running time of our method and Li et al. [15], including off-
line pre-processing time and on-line localization time. In total,
our method needs about 139 CPU hours, while Li et al. [15]
need 277 CPU hours on Quad dataset. Specially, for on-line
localization, our method averagely needs 30 seconds per image,
while Li et al. [15] need a few seconds. Our method takes less

time in total as the 3D reconstruction is time consuming for 2D-
to-3D based methods. At the same time, our method takes more
time than [15] in on-line localization. This is resulted from so
many times of relative pose estimation, which can be parallelly
accelerated in the future.

Overall, we perform 6-DOF localization task for input image
via estimating and fusing its candidate poses relative to each of



its neighbors. The localization accuracy outperforms 2D-to-3D
matching based method. Each module of our method also has
been verified effective.

B. Relative Pose Estimation

Relative pose estimation is one of key steps in our method.
In our configuration, the input image is uncalibrated and has
two intrinsic parameters including focal length f and one order
radial distortion parameter λ. Under this configuration, Brito
et al. [34] estimate the fundamental matrix along with distor-
tion parameter by solving a high-order polynomial system, and
estimate the focal length by minimizing an algebraic error. For
efficiency, we propose a 11-point algorithm based on SVD to
estimate the fundamental matrix along with distortion parame-
ter, and a closed form solver to calculate the focal length. We
compare our algorithm with [34] on synthetic and real image
data, respectively.

The first experiment is performed on synthetic data, which
contain a calibrated camera, a set of random 3D points,
and 1000 randomly generated uncalibrated cameras. Follow-
ing the settings of Brito et al. [34], the calibrated cam-
era is placed at the origin point and looks at the direc-
tion of z-axis. Its focal length is set as 1500. We randomly
generate 1000 3D points {(xi, yi , zi)|1 ≤ i ≤ 1000}, where
xi ∈ (−100, 100), yi ∈ (−100, 100), zi ∈ (250, 350). Then the
parameters of the uncalibrated cameras are also randomly
generated. The camera location (xc, yc , zc) is near the ori-
gin point, where xc ∈ (−100, 100), yc ∈ (−100, 100), zc ∈
(−50, 50). As an arbitrary rotation matrix can be divided into
multiple multiplication of three basic rotation matrixes. Each
basic rotation matrix is corresponding to a Euler angle. A rota-
tion matrix is synthesized via randomly generating three Euler
angles. The focal length is varying between 1/2 and 2X of the
focal length of the calibrated camera. The distortion parameter
λ is between 5 × 10−7 and 0. The 3D points can be projected
to form 2D virtual image points according to the parameters
of each camera. Each image plane contains 1024 × 1024 pix-
els. Moreover, each camera should observe more than 500 3D
points. If two 2D points in different images are from the same
3D points, they are taken as a pair of matched points. To simu-
late the noise in imaging process, we add some Gaussian noise
on the coordinates of each 2D points.

The experimental results of distortion parameter λ and focal
length f on synthetic data are shown in Fig. 8, where the hori-
zontal axis represents the standard deviation of Gaussian noise
added on 2D points and the vertical axis represents relative error
of distortion parameter λ and focal length f . The relative error is
calculated by dividing ground truth by absolute predicted error.
Fig. 8(a) shows the relative error of distortion parameter and
Fig. 8(b) shows the relative error of focal length compared with
[34]. The results of translation angle and rotation angle on syn-
thetic data are shown in Fig. 9, where the horizontal axis also
represents the standard deviation of Gaussian noise added on 2D
points and the vertical axis represents angle error of translation
t and rotation matrix R. The angle error is calculated by figur-
ing out the angle between the estimated result and the ground

TABLE IV
LEFT VALUES INDICATE THE MEAN INLIER EPIPOLAR ERROR (IN PIXELS ON

UNDISTORTED IMAGE PLANE) AND RIGHT VALUES INDICATE THE MEAN

INLIER RATIOS OF OUR ALGORITHM AND [34] ON SYNTHETIC DATA

Standard deviation 0.0 0.1 0.5 1.0

Our method 0.00/100% 1.20/99.4% 2.03/93.0% 2.80/80.8%
Brito et al. [34] 0.00/100% 0.94/96.7% 2.31/84.3% 3.03/73.0%

TABLE V
OUR METHOD NEEDS LESS THAN HALF TIME OF [34] TO ESTIMATE

OSR FUNDAMENTAL MATRIX AND RELATIVE POSE (IN SECONDS)

Our method Brito et al. [34]

Estimate OSR fundamental matrix 3.846 9.768
Intrinsic parameters extraction and 0.415 0.435
estimate relative pose
Total 4.261 10.203

truth. Fig. 9(a) shows the translation angle error and Fig. 9(b)
shows the rotation angle error compared with Brito et al. [34].
Table IV shows the mean epipolar errors of inliers along with
mean inlier ratios of our algorithm and [34] on synthetic data.
The mean inlier ratio is the proportion of inliers in all matched
points. Overall, the experiments show that the accuracy of our
results are comparable with [34]. With the increasing noise, our
method can achieve more accurate results, which means that
our method is more robust than [34] when the coordinates of
2D points are noisy.

Another problem is that as the configurations are randomly
generated, how confident the results are. A more systematic ap-
proach is to uniformly sample all the feasible configurations.
However, as one configuration is uniquely determined by 8 pa-
rameters (i.e. distortion parameter λ, focal length and 6-DOF
relative pose), there is a really large number of potential config-
urations (e.g., 108 probable configurations if we quantize each
parameter to 10 bins). As a result, the completely systematic
approach is computationally infeasible. Inspired by the idea of
the cross validation, we repeat the experiment ten times. The
mean performance of our algorithm and its standard deviation
are 0.722 ± 0.034 for relative error of distortion parameter λ,
0.063 ± 0.002 for relative error of focal length, 5.248 ± 0.242
for translation angle error, 3.016 ± 0.101 for rotation angle er-
ror. The mean performance of [34] and its standard deviation are
0.933 ± 0.042, 0.067 ± 0.002, 5.819 ± 0.273, 3.199 ± 0.117,
respectively. The experimental results show that the perfor-
mance stays stably in different trails using randomly generated
configurations.

We also test our algorithm on 4 sets of real images which
are used in [34]. The mean inlier epipolar error (in pixels on
undistorted image plane) and mean inlier ratios of our results are
1.91/85.2%, 1.76/74.5%, 1.77/81.8% and 1.57/90.7% respec-
tively on these 4 datasets, while the results of Brito et al. [34] are
1.96/84.5%, 1.78/77.4%, 1.62/83.8% and 1.62/90.1%. Our
mean inlier ratio is higher than Brito et al. [34] on dataset 1 and
dataset 4, while Brito et al. [34] higher on dataset 2 and dataset 3.



Fig. 10. Some undistorted results using the distortion parameter λ estimated by our method and Brito et al. [34].

Though the accuracy of our algorithm is not better than [34], our
algorithm is faster. As shown in Table V, our algorithm needs
less than half the time to estimate OSR fundamental matrix and
relative pose averagely, i.e. 4.261 versus 10.20 seconds, exclud-
ing feature extracting and matching time. There are also some
undistorted results using the λ estimated by our algorithm and
Brito et al. [34] respectively in Fig. 10, which have little differ-
ence. Note that, we embed the fundamental matrix estimation
algorithm in an RANSAC process with 200 iterations. All these
experiments are done using Matlab 2013a on the same PC with
I7-3770 CPU and 4 GB RAM. The reason for our algorithm’s
faster is that, our algorithm mainly applies SVD algorithm which
can be performed fast, while Brito et al. [34] have to solve a
higher-order polynomial system which needs more time.

Comparing our method with Brito et al. [34], all the formula-
tion and computation differences are caused by using different
number of point matches. Our method uses 11 point matches,

while [34] uses 9 point matches. If there are only random noises
on the coordinates of 2D point, theoretically, it is more robust
to use more point matches. This is exactly why to usually re-
fine the final result using all inlier point matches. This is also
verified by the experiments, our results are better than [34] with
the increasing noise on synthetic data. At the same time, there
are also false positive point matches between real images. As a
result, it is more difficult to select a set of good matches if using
more. This maybe the reason why our method obtains lower
inlier ratio than [34] on some real image datasets, i.e. real image
dataset 2 and 3.

1) Failure Case: Lastly, we also discuss some failure cases.
If there are few discriminative features in the input image, the
image retrieval algorithm may fail to retrieve its real nearest
neighbors. As a result, our method may lack the ability to lo-
calize such images. As shown in Fig. 11, there are two failure
cases on Quad dataset. In the first case, the building is occluded



Fig. 11. Two failure cases on Quad dataset. If the input image contains few
discriminative features, e.g., the building is occluded by a tree in top case, most
areas are trees, road, or snow in bottow case, the retrieval results are all false
positives. As a result, our method may fail to localize these images.

by a tree. In the second case, most areas of the image are undis-
criminating, such as trees, road, or snow.

V. CONCLUSION

In this paper, we propose a flexible method to localize an
input image by fusing its poses relative to its neighbors. The
neighbors are retrieved from a reference image dataset. An effi-
cient algorithm is further proposed to estimate the relative pose
between an uncalibrated input image and a calibrated neighbor
image. As a result, several candidate poses of the input image are
obtained. To figure out the final location, we further define and
minimize a geometry error to fuse these candidate poses. Each
module of our method is verified effective in experiments. Our
method can obtain satisfactory localization accuracy. Compar-
ing with 2D-to-3D based methods, our method is more flexible
to exploit the increasing geo-tagged data. At the same time, our
method need more time in on-line localization process. This is
resulted from so many times of relative pose estimation. As this
process can be paralleled, we can accelerate our method using
multiple CPU cores in the future.
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